Using SpeedPaks in solidworks tutorials

A SpeedPak is a derived configuration of an assembly that keeps only selected solid bodies and faces, but can represent the rest of the assembly with non-selectable display data. A SpeedPak can be used to replace an entire subassembly within an upper-level assembly. SpeedPaks are intended to increase performance with very large assemblies and drawings.

Figure 12.5 shows first the SpeedPak PropertyManager, which you access by right-clicking an active configuration, and selecting Add SpeedPak. Each configuration can have only one SpeedPak.

Figure 12.5 also shows the configuration list with the SpeedPak listed indented under the Default config, and the entire assembly. The final image shows the SpeedPak inserted into an assembly document, consisting of a single face and two solid bodies. Notice the special icon associated with SpeedPaks. You can change a part in an assembly from or to a SpeedPak in the same way that you would change a configuration using Component Properties.

Remember this is a tool for increasing assembly speed, and to increase speed, there is always something that you have to give up. SpeedPak can be thought of in some ways like Lightweight assemblies and components in that it is display-only data. If your expectations of the tool are in line with the actual functionality, you will be very satisfied with the functionality SpeedPaks offer. For this reason it is important to understand the abilities and limitations of SpeedPak.

Using ghosts

You can use any faces or bodies that you select in the Include lists either manually or through the Quick Include sliders (which automatically select bodies and faces based on size) in assemblies to mate to or in drawings to dimension to. Any geometry that is not selected is included as a ghost — it displays, but cannot be selected. When the cursor gets near ghost geometry, the ghost fades away, revealing only selectable geometry. Notice at the bottom of the SpeedPak PropertyManager that you can also choose to remove the ghost data and further increase the memory savings.

Sharing self-contained data

The SpeedPak is self-contained. All the selected face and body geometry is saved inside the assembly. If you want to send someone a visual representation of an assembly, make a SpeedPak configuration and send only the assembly file — no parts are required. This is the equivalent of being able to put an eDrawing file into an assembly.

Using SpeedPak with drawings

You can even use SpeedPaks with drawings. Just remember that only edges created by the faces or bodies in the Include lists can be dimensioned to. Some functionality exists for the ghost data, such as BOM inclusion and numbered balloons. Ghost data displays as gray on the drawing, while geometry in the Include list is black.

geomety 1

geomety 3

FIGURE 12.5 Managing SpeedPaks

Using Subassemblies

The primary tool for organizing assemblies is the subassembly. A subassembly is just a regular assembly that is used as a component in another assembly.

Best Practice

The number of levels of subassemblies is not limited to a specific number, although for different sizes and types of assemblies, I encourage you to establish a best practice for your company. For example, establish a guideline that suggests that subassemblies of 100 parts or less go no deeper than three levels. 

You can use several criteria to determine how subassemblies are assigned:

  •   Performance
  •   BOM
  • Relative motion
  • Pre-fabricated, off-the-shelf considerations
  • According to assembly steps for a process drawing
  • To simplify patterning

The underlying question here is based on the multiple functions of your SolidWorks assembly model. Is the assembly intended primarily for design? For visualization? For documentation? For process documentation? When used primarily for design, the assembly is used to determine fits, tolerances, mechanisms, and many other things. As a visualization tool, it simply has to look good and possibly move properly if that is part of the design. As a documentation tool, it is important how the model relates to the BOM, and the order in which subassemblies are added. As a process tool, you need to be able to show the assembly in various intermediate states of being assembled, likely with configurations.

I have seen companies create multiple assembly models for different purposes. Sometimes the requirements between the different methods are contradictory and cannot all be met at the same time with a single set of data. Again, depending on what information you need to be able to extract from your SolidWorks models, you may want to approach assembly modeling and organization differently, and you may need to create multiple assembly models to accomplish everything.

Creating subassemblies from existing parts

You can create subassemblies from parts that already exist in an assembly. To do this, select the parts that you want to add to the subassembly using Shift+, Ctrl+, or box select techniques, and then select Form New Subassembly Here from the right mouse button (RMB) menu. You are then prompted to assign a name or possibly select a template for the new subassembly.


When creating a new subassembly from existing parts or when moving parts into or out of a subassembly from the upper-level assembly, some things may be lost. For example, mates are moved from the upper level to the subassembly. If you have in-context relationships, they may be removed. Operations that create subassemblies cannot be undone easily.

Once you have created the subassembly, you can add or remove components using the drag-anddrop method. For example, Figure 12.6 shows the cursor that indicates that the part named Left Crank is being moved into the subassembly named bike crank. To move a part out of a subassembly, simply drag the part into the upper-level assembly.

geomety 4

FIGURE 12.6 Moving parts into a subassembly


When you are dragging a part out of an assembly and into another one, you may again see the cursor symbol that appears in Figure 12.6. If you do not want this to happen, hold down the Alt key while dragging. The cursor symbol changes to the Reorder cursor (a reversed, L-shaped arrow), and the part is placed after the subassembly rather than within it.

Insert a new subassembly

Along with the RMB menu option Form New Subassembly Here, which takes existing parts and puts them into a newly created subassembly, you can use another option called Insert New Subassembly. The names of these functions do not adequately describe the difference in what they do. Insert New Subassembly inserts a blank subassembly at the point in the design tree that you indicate by right-clicking it. You can place components into the subassembly by dragging and dropping them from the main assembly, or you can open the assembly in its own window and insert parts by using the usual methods.

Dissolving subassemblies

If you would like to get rid of a subassembly but want to keep its parts, then you can use the Dissolve Subassembly option through the RMB menu. This option has some of the same consequences of the Form New Subassembly Here option in that mates are moved from the subassembly to the upper-level assembly, and you may lose in-context relations and assembly features.

There are no comments yet, add one below.

Leave a Comment

Your email address will not be published.